DR DARREN WARD (Orcid ID : 0000-0002-0049-5299)
 the Trinity River, California

Justin S. Alvarez ${ }^{1}$
Darren M. Ward ${ }^{2 *}$

1 Hoopa Valley Tribe, Fisheries Department, Hoopa, California, 95546
2 Humboldt State University, Department of Fisheries Biology, 1 Harpst St, Arcata, California, 95521
*Corresponding author: darren.ward@humboldt.edu

Brown trout predation on wild and hatchery salmon

Abstract

Non-native predators may interfere with conservation efforts for native species. For example, fisheries managers have recently become concerned that non-native brown trout may impede efforts to restore native salmon and trout in California's Trinity River. However, the extent of brown trout predation on these species is unknown. We quantified brown trout predation on wild and hatchery-produced salmon and trout in the Trinity River in 2015. We first estimated the total biomass of prey consumed annually by This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/EFF. 12476

This article is protected by copyright. All rights reserved
brown trout using a bioenergetics model and measurements of brown trout growth and abundance over a 64 km study reach. Then, we used stable isotope analysis and gastric lavage to allocate total consumption to specific prey taxa. Although hatchery-produced fish are primarily released in the spring, hatchery fish accounted for most of the annual consumption by large, piscivorous brown trout (> 40 cm long). In all, the 1579 (95\% CI 1279-1878) brown trout $>20 \mathrm{~cm}$ long in the study reach ate $5930 \mathrm{~kg}(95 \%$ CI $3800-8805$ kg) of hatchery fish in 2015. Brown trout predation on hatchery fish was ca. 7% of the total biomass released from the hatchery. Brown trout only ate 924 kg (95% CI 60-3526 kg) of wild fish in 2015, but this was potentially a large proportion of wild salmon production because wild fish were relatively small. As large brown trout rely heavily on hatchery-produced fish, modifying hatchery practices to minimize predation may enhance survival of hatchery fish and potentially reduce the abundance of predatory brown trout.

Introduction

[^0]hatcheries to the Trinity River, one near the mouth at Fort Gaston and a separate effort closer to the headwaters in Stewart's Fork and the main stem Trinity River near Lewiston, CA (Thomas, 1981; Adkins, 2007). According to a Trinity Journal newspaper article (1911), the motivation behind the upstream introduction was the California Fish and Game Commission's plan to replace native rainbow trout (Oncorhynchus mykiss) with the "more desirable brown trout" throughout the state. The downstream introduction was implemented to supplement the dwindling salmon fishery that the local Hoopa Tribe relies on for sustenance (Adkins, 2007). In the early years of brown trout introduction to the Trinity River, fisheries managers raised concerns that the brown trout predation was impacting abundance of native salmon species through predation (Thomas, 1981). This lead to a moratorium on brown trout releases in the Trinity River during the 1920's, but the moratorium was short lived and brown trout stocking was gradually phased back in and continued until 1932 (Thomas, 1981).

Prior to and during the time period when brown trout were introduced, native fishes of the Trinity River experienced steep declines in abundance (Adkins, 2007). Native and tribally-important species such as Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead trout (O. mykiss), and Pacific lamprey (Entosphenus tridentatus) were affected by large-scale habitat loss from intensive mining and logging throughout the watershed. A pair of dams completed in the early 1960s exacerbated these effects, cutting off access to the entire upper watershed for migratory fish and diverting a substantial fraction of the Trinity River's water to California's Central Valley for irrigation. The Trinity River hatchery was completed in 1958 to partially mitigate the effects of habitat loss on salmon production. The hatchery currently releases more than 2 million juvenile salmon and steelhead per year into the Trinity River and spawns returning adults to produce the next generation of hatchery fish (California Hatchery Scientific Review Group, 2012). Recent efforts to rehabilitate the native fish populations of the Trinity River also include a massive investment in habitat restoration, including large-scale channel reconfiguration, cover addition, minimum flows, and habitat-forming flow releases from the dams (Beechie et al., 2015). Currently, Trinity

This article is protected by copyright. All rights reserved

River Chinook salmon and steelhead remain well below historic abundance and Trinity River coho salmon are considered threatened under both state and federal laws (National Marine Fisheries Service 2014).
The potential for brown trout to directly affect native salmon populations by predation depends on brown trout feeding behavior and abundance. Piscivory by Trinity River brown trout has been documented during field projects focused on other species and by local fisherman, but no formal diet studies of this brown trout population have been conducted. The best historical index for brown trout abundance in the Trinity River is the adult salmon sampling weir in Junction City (river kilometer 136.2). Brown trout catch totals increased at the weir during sampling from 2000 to 2013 to levels 200-300\% higher than those in the 1980's and 1990's, despite reduced sampling effort since 2000 (Borok, Cannata \& Hileman, et al., 2014a,b; National Marine Fisheries Service, 2014). Documentation of piscivory combined with the potential increase in brown trout populations inferred from weir catch data suggest that brown trout may be having a substantial impact on native fishes. This threat was identified by the California Department of Fish and Wildlife in 2005 and provided the impetus for changing fishing regulations, adding a bag limit of one brown trout in 2006 and increasing it to five brown trout in 2007 (California Fish and Game Commission, 2007). Trinity River brown trout were also identified as an impediment to species recovery in the recovery plan for Southern Oregon and Northern California coho salmon (National Marine Fisheries Service 2014).

To assess predation by brown trout on native species, we undertook the first largescale sampling effort for brown trout in the Trinity River. Sampling included multi-pass electrofishing over a 64 km study reach to estimate abundance, size, growth, and age structure of brown trout. We used diet sampling and isotope analysis to characterize brown trout diet composition. Finally, we used the brown trout population and diet data to parameterize a bioenergetics model to estimate brown trout consumption of salmon and other prey in the Trinity River.

This article is protected by copyright. All rights reserved

Methods

Study Area

The Trinity River in Northern California is the largest tributary to the Klamath River, with a main stem length of 274 km and a watershed area of about $7679 \mathrm{~km}^{2}$. The Trinity River's headwaters are in the Trinity Alps at an elevation of about $1,850 \mathrm{~m}$ and the confluence with the Klamath River in Weitchpec is 69.5 km from the ocean at an elevation of 56 m . There are two large earthen dams on the Trinity River. Upstream at river kilometer 261.6 is Trinity Dam, which is used for water storage, and downstream at river kilometer 250.3 is Lewiston Dam, which is used to export water to the Sacramento River basin. The Trinity River Fish hatchery is located at Lewiston Dam and all hatcheryproduced fish are released immediately downstream of the dam.

This study is focused on the 64 km of the main stem Trinity River below Lewiston Dam and above the North Fork of the Trinity River (Figure 1). Existing observations indicate that brown trout are widespread through the 178 km of anadromous habitat in the main stem Trinity River as well as major tributaries. However, based on habitat use data collected for other studies (Goodman et al., 2015), brown trout are most abundant in the focal area and it is the area where they likely have the most access to native salmon prey from hatchery releases and natural spawning grounds.

Discharge from Lewiston Dam ranges annually from 8.6 to $311.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. With tributary inputs downstream of the dam, the Trinity River near the North Fork experiences flows between 12 and $850 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. There is a characteristic seasonal flow pattern: during winter and spring storms and an annual spring dam release, the upper range is approached; by mid-summer and through winter the flows stay closer to the lower range.

The 64 river kilometers in which the study took place were divided into six reaches based on tributary inputs, river access, and prior information about brown trout density (Figure 1). The boundaries of each reach occurred at the following locations and creek mouths in downstream order: the concrete weir below Lewiston Dam, Rush Creek, This article is protected by copyright. All rights reserved

Steel Bridge river access, Indian Creek, Evans Bar river access, Canyon Creek, and the North Fork of the Trinity River.

Fish sampling

A 4.3 meter raft with a Smith-Root 2.5 kilowatt generator powered pulsator electrofisher system (Smith-Root Inc., Vancouver, WA) was used to sample the entire 64 km of river. The control box was set with a DC pulse rate of 30 Hz with voltage between 300 and 400. Sampling focused on the thalweg of the main stem while moving slowly downstream. In March of 2015, the study area was sampled with three passes. Each pass proceeded from upstream to down and took four days to complete. A single sampling pass started near Lewiston Dam on Monday and worked down to a river access. Tuesday sampling began where Monday's sampling left off and this pattern continued until the 64 km was completed on Thursday. The following Monday, a new pass would begin starting at Lewiston Dam again. The 7-day interval between samples at a given location allowed brown trout to recover from handling stress and resume normal feeding behavior before being resampled (Pickering, Pottinger, \& Christie, 1982). The three passes bounded the spring release of coho salmon smolts from the hatchery: the first pass was completed before the release, the second immediately following the release, and the third after many of the released smolts had migrated through the study area (Harris, Petros, \& Pinnix, 2016). A similar brown trout sampling effort was conducted in the spring of 2016, providing additional diet samples and recaptures for final growth measurements of tagged individuals.

Most brown trout were sampled by electrofishing (859 total), but additional samples were collected opportunistically by other means to provide diet data from outside the spring electrofishing season and to provide additional samples for size and growth analyses. An Alaskan style weir, operated by the California Department of Fish and Wildlife and the Hoopa Tribe, was installed in Junction City California in late June and run through September in 2015 and 2016 to catch migrating adult salmon (Sinnen et al., 2005). Brown trout captured in the weir in 2015 and 2016 (224 total) were processed as described below. We also processed some additional individuals captured using rod and

This article is protected by copyright. All rights reserved
reel (29 total). All method produced a similar size range of fish, from 20 cm (minimum size used in the analysis) to at least 60 cm .

Processing and Handling

Once captured, all brown trout $>20 \mathrm{~cm}$ long were anesthetized in water saturated with CO_{2} using Alka-Seltzer Gold tablets. Trinity River brown trout are the target of a recreational fishery, so alternative anesthetics that require a withdrawal period before human consumption were not suitable for this work. Fish $<20 \mathrm{~cm}$ long were too small for our tagging operation and were less likely to be piscivorous, so we did not include smaller fish in subsequent analysis. Once anesthetized, the fish were measured (fork length) and the following samples were collected: scales were taken from the left side between the anal and dorsal fin just above the lateral line for age analysis, a one centimeter square fin clip was taken from the distal posterior tip of the dorsal fin for stable isotope analysis, and stomach contents were collected using gastric lavage for diet analysis. Fish were weighed following gastric lavage so that stomach contents would not contribute to the mass. Lavage was conducted using a hand-pumped garden sprayer. The spray pipe was placed through the fish's mouth into the stomach and water was sprayed in until the stomach was full. Through continued filling and massaging the belly from the outside, food items were washed and pushed out. A sub-sample of 30 fish was sacrificed after processing and the stomachs examined to gauge the effectiveness of the gastric lavage. Of these, 28 had completely empty guts, indicating that lavage was generally effective.

After the samples and measurements were taken, the fish were tagged with a uniquely numbered FD94 T-bar tag (Floy Tag \& Manufacturing Inc., Seattle, WA) for future identification and then released. The tags were made of a 7.5 cm long piece of monofilament with polyolefin colored tubing around it. At the insertion end was a 1.5 mm thiek, 2 cm wide " T ". The tag was injected using Floy Tag's Mark III pistol grip tagging gun. The needle was inserted below the dorsal fin to allow the T to articulate with the dorsal support skeleton. The color of the T-bar tag corresponded with a reach (Figure 1) where the fish was collected. These colors allowed a quick visual indication of
larger-scale movements while sampling fish in the field and were a check for the closure assumption of the population estimate. Fish captured at the weir received a Floy tag with a distinct tag color to differentiate them from fish tagged during electrofishing.

Analysis
 Population estimate

- The electrofishing passes were used to generate the population estimate used in the energetics simulation (described below). The population estimate was calculated using Chapman's estimator (Seber, 1982). This estimator assumes a closed population, with no births, deaths, emigration, or immigration. Movement assumptions were tested using the different colored tags in each reach. During the three-pass sample bout, all but one of the recaptured fish were found in the reach where they were initially tagged. Based on the lack of individual movement and the short timeframe for births and deaths in the one week between passes, we considered the closure assumptions met. The first pass was used as the first sampling occasion while the second and third passes were combined into a second sampling occasion.
Not all of the reaches had enough recaptures of tagged fish to calculate a separate population estimate for each reach with reasonable precision, so the whole surveyed section of river was treated as one population for the main estimate. Subsequently, we calculated a population estimate for each reach by dividing the main population estimate among reaches proportionally to the catch in each reach. Using this approach, the overall population estimate used the maximum sample size available.

Age and growth analysis

- Brown trout scales were sorted, mounted, and examined following the plastic impression method (Clutter \& Whitesel, 1956; Van Alen, 1982). After discarding unreadable or regenerated scales, each scale was assigned an age and a confidence level (high, medium, or low); those scales with a low confidence level were not used in subsequent analyses. To ensure age readings were being done consistently, scales taken from individual fish that were sampled in multiple years were checked to ensure the increase in age estimates from the scales matched the time that passed between sampling.

These checks were conducted blind to the original data by the same reader. All repeatsampled fish ($\mathrm{n}=31$) were aged consistently.

The length and age data were fit to a von Bertalanffy growth model assuming additive error with normally distributed residuals using the nonlinear least squares (nls) function in base R (R Development Core Team, 2009). The model is: $L_{t}=L_{\infty}(1-$ $e^{\left.-k\left(t-t_{0}\right)\right)}+\varepsilon$ where L_{t} is fork length at age t, L_{∞} is the asymptotic maximum length, k defines the rate at which the asymptote is approached, t_{0} is the hypothetical age of the fish at size zero, and ε is error.
(We also fit individual length and mass measurements to an allometric curve with multiplicative error in base R (R Development Core Team, 2009) using the nls function. This relationship was used in the bioenergetics model to convert the predicted growth in length from the von Bertalanffy model to growth in mass for the bioenergetics model.

Annual survival analysis
Age-frequency data can be analyzed in multiple ways to estimate survival rates. In simulation studies, the Chapman-Robson survival estimate had less bias and less error than other techniques, especially at small sample sizes (Dunn, Francis, \& Doonan, 2002), so that method was applied. The Chapman-Robson estimator is formulated as

$$
\hat{S}=\frac{T}{n+T-1}
$$

where $T=\sum\left(x * N_{x}\right)$, where \hat{S} is the annual survival estimate, n is the total number of aged fish from the fully recruited ages, x is the coded age where coded age 0 is the age with the highest number of individuals caught, and N_{x} is the number of individuals of each age. This approach assumes constant survival throughout the population and constant recruitment across years. We calculated separate survival estimates for the 2015 and 2016 catch and used the average of the two for the consumption model.

Isotope analysis of diet composition

We measured carbon and nitrogen isotope ratios in 253 brown trout fin clip tissue samples as well as in samples of multiple potential prey items. We selected prey items to analyze for isotopes based on the prey that were most prevalent in the gut samples. Prey
items included various mayflies (Ephemeroptera), golden stoneflies (Perlidae) and salmonflies (Pteronarcys californica), as well as lamprey ammocoetes, wild steelhead trout fry, and hatchery coho salmon smolts. As juvenile salmonids of different species generally have similar diets, we assumed that wild steelhead fry represented the isotope composition of wild salmon and trout (including potential cannibalism on juvenile brown trout). All hatchery fish are fed the same food, based on marine-derived fish meal, so we assumed that the hatchery coho salmon smolts represented the isotope composition of all hatchery species. Non-salmonid fish species besides lamprey were rare in the diet samples (present in < 1% of samples), so they were not assessed as potential prey in the isotope analysis. The prey samples were collected from a rotary screw trap run by the Hoopa Tribal Fisheries program that is located within the sample area in the downstream reach. Isotope samples were placed on ice immediately after collection and were transferred to a freezer upon return from the field at the end of the day. From the freezer, the samples were transferred to a drying oven set to $65^{\circ} \mathrm{C}$ and were dried for $36-60$ hours. The dried samples were homogenized and a subsample of 0.5 to 1.5 mg removed, weighed, and placed into a tin capsule. The encapsulated tissue was placed in a plastic tray in one of 96 wells.

The filled trays were sent to UC Davis stable isotope lab for analysis of Carbon $13\left(\delta^{13} \mathrm{C}\right)$ and Nitrogen $15\left(\delta^{15} \mathrm{~N}\right)$ using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). The $\delta^{15} \mathrm{~N}$ and $\delta^{13} \mathrm{C}$ values reported were the values of the sample relative to ratios of the international standard for each element, air for nitrogen and Vienna PeeDee Belemnite for carbon.

Isotopic data was used to determine the proportion of each prey type within the diets of the brown trout. Prey were grouped into four categories: ammocoetes, aquatic invertebrates, hatchery salmonids, and wild salmonids. Limiting the ratio of prey groupings to isotopes improves model fit (Phillips \& Gregg, 2003). As brown trout length was found to be positively correlated with $\delta^{15} \mathrm{~N}$ and $\delta^{13} \mathrm{C}\left(\mathrm{r}^{2}\right.$ of 0.55 and 0.58 respectively), the brown trout isotope data were grouped into five categories based on

This article is protected by copyright. All rights reserved
fork length: $<30 \mathrm{~cm}, 30-40 \mathrm{~cm}, 40-50 \mathrm{~cm}, 50-60 \mathrm{~cm}$, and $>60 \mathrm{~cm}$. These break points provided adequate samples within each bin to facilitate isotopic analysis and improved resolution within the bioenergetics model when converting food requirements to biomass consumed. The proportions of each prey type consumed by each brown trout group were estimated by fitting the isotope data using a Bayesian framework in the R package MixSIAR (Stock \& Semmens, 2013). This package uses a Markov Chain Monte Carlo (MCMC) approach to fitting multi-linear models. Three chains were run with one million iterations each. The burn in length was 500,000 and the thinning rate was 500. The model was run with brown trout size category as a fixed effect and only residual error. Estimated fractionation rates were derived by averaging values from literature sources: 3.74 SD 0.477 for $\delta 15 \mathrm{~N}$ and 1.38 SD 0.983 813C (Minagawa \& Wada, 1984; Peterson \& Howarth, 1987; Vander Zanden, Cabana, \& Rasmussen, 1997; Vander Zanden \& Rasmussen, 2001; McCutchan et al., 2003; Flinders, 2012).

Bioenergetics

A bioenergetics approach was used to estimate total prey consumption by brown trout, with a parametric bootstrap to characterize the variance of the estimate. The bioenergetics simulation represented the growth and consumption of age 2-12 brown trout over one year. The model ran on a daily time step where March 1, 2015 was model day one. The base of the simulation was the Wisconsin Bioenergetics model (Hansen et al., 1997) coded into R (code by Andre Buchheister, personal communication, August 2015). Published values for parameters relating to brown trout metabolism, egestion, activity, growth, and consumption were used to set a baseline and facilitate comparison to other studies (Table 1). We did not have information about brown trout spawning frequency in the system, so we did not include gamete loss in our model, potentially producing an underestimate of total consumption.

To estimate the maximum amount a brown trout could consume, we used Hansen et al.'s (1997) third consumption equation, as it is designed for cold water fishes such as brown trout. In the model, consumption is dependent on size, water temperature and the amount of food consumed in lab experiments during ad libitum feeding at optimal

This article is protected by copyright. All rights reserved
temperatures. To estimate what brown trout actually consume, the modeled maximum consumption is scaled by the proportion of maximum consumption (p). The proportion of maximum consumption (p) was allowed to vary between simulation iterations to achieve the targeted growth of the brown trout of each age. Parameters representing the mass at the start of the year, mass-specific growth rate, population size, survival rate, and diet composition were randomly selected for each iteration of the model from a normal distribution, with a mean and standard deviation for each parameter derived from the field data (Table 2).

Additional input data required in order to estimate consumption included mean daily temperature and prey-specific energy density. The temperature fish experienced was determined using linear interpolation of the mean daily temperature between available U.S Geological Survey gage stations (ID numbers 11525500, 11525655, 11525854, and 11526400). The temperature profiles used in the energetics model were that of the midpoint of each reach from March 1, 2015 through February 28, 2016 (Figure 2). The prey energy densities were literature values: invertebrates $4.07 \mathrm{~kJ} / \mathrm{g}$ (Groot, Margolis, \& Clarke, 1995; Myrvold \& Kennedy, 2015), lamprey ammocoetes 3.54 kJ/g (Alvarez 2017), other fish $5.78 \mathrm{~kJ} / \mathrm{g}$ (Hansen et al. 1997). Temperature and prey energy density were not randomized as part of the bootstrap.

Each simulation started with a random draw of average starting size for brown trout of each age from 2-12 (Table 2). Then, randomly drawn von Bertalanffy parameters were used to calculate average sizes at the end of the year. After converting length to mass, an optimization function (optim in R, (R Development Core Team, 2009) was used to find the proportion of maximum consumption required to achieve the selected final mass within each reach for an individual of each age. During that growth interval, daily size and consumption were recorded for each fish. Next, a random draw of population size and survival rate were used to find the number of fish of each age on each day. Finally, the number of fish alive on each day within the appropriate reach and of the appropriate age was used to expand the individual brown trout daily consumption estimates to the reach level. To facilitate allocating total consumption to different prey

This article is protected by copyright. All rights reserved
types, the total biomass consumed each day was aggregated into the five length-based bins used in the stable isotope mixing model. This process was repeated 3,000 times to characterize the variation in consumption given different growth rates, and to account for the error associated with growth, abundance, and survival estimates. The error estimate does not include variation associated with process error or bioenergetics parameters taken from the literature. These model runs produce estimates of the total biomass of food with the energy density of brown trout that is consumed for each size class.

Diet proportion, predator and prey energy densities, and the estimate of consumption from the simulation were combined to find the biomass of each prey category consumed by brown trout. For this portion of the analysis, the posterior distribution from the isotopic analysis was treated as a parametric bootstrap which we drew from with a multinomial random draw. A random multinomial draw of consumption by for each size bin was combined with a draw of prey proportion and energy densities in the equation $=\frac{E}{A * E_{A}+H * E_{H}+W * E_{W}+I * E_{I}}$, where B is the total biomass consumed and E is the total energy required. The symbols A, H, W, and I are the proportion ammocoetes, hatchery fish, wild fish, and invertebrates contribute to total biomass consumed, respectively. E_{x} is the energy density of the prey category x. The resulting biomass combined with the random draw of proportions provides the biomass of each prey type consumed by the population for a single iteration. This process was repeated 100,000 times to generate a distribution of consumption estimates, ensuring multiple combinations of the consumption and diet composition estimates.

Results

In 2015 we captured 589 brown trout between 20 and 79 cm . Based on recaptures, we estimated the population to be 1580 (95% CI 1279-1878). The scale samples collected from these fish revealed their ages ranged from 2 to 11 years (Figure 3). This sample provided sufficient representation of the population's age and size
composition to estimate growth and survival parameters for the bioenergetics model (Table 2).

Wild fish and invertebrate prey had lower $\delta^{15} \mathrm{~N}$ and $\delta^{13} \mathrm{C}$ than hatchery fish. Brown trout isotope values ranged from in between wild prey and hatchery fish values to higher than both (Figure 4). The MixSIAR model MCMC chains converged with all parameters having \hat{R} values of less than $1.01(\hat{\mathrm{R}}<1.05$ is acceptable for inference (Stock \& Semmens, 2013). The model results show that the large brown trout consume very a high proportion of fish, especially hatchery fish, and that reliance on fish declines in smaller brown trout (Figure 5). A relatively small proportion of the diet comes from wild fish.

The snapshot of diets from gastric lavage samples shows a similar level of piscivory as the isotope model for larger size classes, but lower than the isotope model for small size classes (Table 3). However, gastric lavage lacks the full temporal scale of the isotope analysis and is not as effective at parsing out wild and hatchery fish. While most fish retrieved during lavage were not identifiable to hatchery or wild origin (based on hatchery marking), the temporal pattern of fish consumption by brown trout was consistent with heavy reliance on hatchery-released fish. The number of fish found in stomachs of brown trout peaked in the sample pass conducted immediately following the release of coho salmon smolts from the hatchery (average: 2.2 fish per stomach; SD 2.6; range: $0-11$) relative to the sample before the smolts were released (average: 0.3 fish per stomach; SD 0.8 ; range: 0-9) and after most hatchery coho salmon smolts had moved out of the study area (average: 0.3 fish per stomach; SD 0.7; range: 0-2). Across all samples, coho salmon were the most common identifiable fish in lavage samples ($\mathrm{n}=36$), followed by steelhead ($\mathrm{n}=16$), Chinook salmon $(\mathrm{n}=5$), and brown trout ($\mathrm{n}=5$, not counting one individual that apparently consumed 4 small brown trout in the live well during sampling). Additional fish recovered from lavage samples were not identifiable to a single species, but based on size and time of year we could narrow these fish to the two most likely prey species: larger fish were either yearling coho salmon or steelhead trout ($\mathrm{n}=73$) and the smaller fish were either Chinook or coho salmon ($\mathrm{n}=14$).

This article is protected by copyright. All rights reserved

The energetics simulation predicted that the brown trout population needed to consume 58,382 megajoules (95% CI 39,334 to 77,432) of energy per year. Variation in growth rate accounted for most of the dispersion around the consumption estimates. The variation around the population size and survival rate estimates added additional variation around the consumption estimate, but this variation was almost inconsequential when compared to differences from growth. When energy was converted into prey biomass by category, the most-consumed prey item was hatchery fish, followed by invertebrates, wild fish, and ammocoetes (Figure 6). In 2015, brown trout consumed 5930 kg (95% CI 3,800 to $8,805 \mathrm{~kg}$) of hatchery salmonids and $924 \mathrm{~kg}(95 \%$ CI 60 to 3526 kg) wild salmonids.

Discussion

Non-native brown trout in the Trinity River are highly piscivorous. We found that large individual brown trout relied heavily on native salmonids as prey. This is a particular concern given the ongoing, intensive recovery efforts for native salmonids in the Trinity River. Here, we consider brown trout predation separately on hatchery and wild-spawned fish. We take this approach for three reasons: First, hatchery fish are isotopically distinct from other prey sources due to the marine fish component of hatchery fish feed, so we had to estimate consumption of hatchery fish separately from wild fish in our isotope analysis. Second, hatchery production and release practices are factors that managers can control to potentially affect predation rate or brown trout abundance, but this is not true of wild-spawned fish. Third, although the Trinity River hatchery and wild runs of salmon and trout are genetically integrated, hatchery and wildspawned individuals often have different survival and adult return rates (Araki et al., 2008) so predation on each type may have different effects on salmon and trout populations.

Hatchery-produced fish

Piscivorous brown trout in the Trinity River relied heavily on hatchery-produced fish. Our isotope analysis indicates that most of the biomass of large brown trout in the This article is protected by copyright. All rights reserved

Trinity River is derived from consumption of hatchery fish. Other studies have found that releases of large numbers of hatchery-produced fish can provide a substantial resource pulse that alters recipient ecosystems (Warren \& McClure, 2012; Alexiades, Flecker, \& Kraft, 2017). To put the results for predation on hatchery fish in context with regard to salmon production, the mean estimate of hatchery fish biomass consumed by brown trout was about 7\% of the total biomass released from Trinity River Hatchery in 2015.

The artificial subsidy provided by juvenile salmon and trout from the hatchery likely allows Trinity River brown trout to maintain elevated population levels and reach larger size than would otherwise exist within the river. Historical records suggest that the Trinity River brown trout population increased substantially after hatchery releases began, (Moffett and Smith 1950; Rodgers 1973) giving some credence to the notion that hatchery supplementation increased brown trout population growth, although habitat restoration and changes in flow management probably explain some of the variation in brown trout abundance. Brown trout are currently sustained by hatchery fish even though the availability of hatchery fish is seasonally limited to relatively brief periods after hatchery releases and before the hatchery fish migrate out of the Trinity River heading for the ocean (March for coho salmon, April for steelhead trout, June and October for Chinook salmon). Our bioenergetics model and observations of stomach contents suggest that the large brown trout feed voraciously immediately following hatchery releases and probably do not gain much biomass during the rest of the year. However, brown trout do still eat opportunistically when hatchery fish are not available, including during the vulnerable emergence and early rearing period for wild salmon and trout in the study area (January-February).

There was a clear ontogenetic diet shift for Trinity River brown trout, with increasing reliance on hatchery fish for larger, older individuals. An increase in piscivory with size is a well-documented phenomenon for brown trout (L'Abée-Lund, Langeland, \& Sægrov, 1992; Jensen, Kiljunen, \& Amundsen, 2012) and is often accompanied by a rapid increase in growth rate and a larger maximum size (Jonsson et al., 1999). However, recent work suggests that the shift to piscivory is contingent on the presence of a suitable

This article is protected by copyright. All rights reserved
prey species that is vulnerable to brown trout and abundant enough to support a population of predators (Sánchez-Hernández et al., 2017) . Hatchery-released fish may fill this role for brown trout in the Trinity River, supporting a shift to piscivory and sustaining the biomass large, predatory individuals.
Wild-spawned fish

- Our estimate of predation on wild-spawned salmon and trout is lower and less precise than the estimate for hatchery-produced fish. The lower precision of this estimate is caused in part by the isotopic similarity of wild salmon and trout to other naturallyoccurring prey items in the Trinity River, including insects and lamprey ammocoetes. However, based on observations of fish in brown trout diets before the hatchery releases, we know that brown trout in the Trinity River do actively feed on wild-spawned salmon and trout. Although the total biomass of wild fish that brown trout consume is much lower than for hatchery fish, this predation is still a potential concern for conservation because it occurs over longer time spans, including the early rearing period when the total biomass of wild fish available is much lower than the biomass of hatchery fish available during hatchery releases. However, translating our consumption estimates into mortality rates and estimating the effects of brown trout on wild salmon populations in the Trinity River is not possible with the current data set.

Based on the average estimate of ca. $1,000 \mathrm{~kg}$ of wild salmonids consumed by brown trout and a total of $\mathrm{ca} .4,000 \mathrm{~kg}$ of juvenile salmonids outmigrating from the upper Trinity River (Harris, Petros, \& Pinnix, 2016), we could naively say that 20% of wild salmonid production in 2015 was consumed by brown trout. However, this estimate could have a substantial positive or negative bias for a variety of reasons. First, some proportion of the wild salmonids consumed by piscivorous brown trout were juvenile brown trout, which are lumped with other wild-spawned salmon and trout in the isotope analysis (potential positive bias). The lavage data suggests that cannibalism was relatively rare, but our samples from outside of the spring electrofishing sample bouts are limited and cannibalism may have been more common in other seasons. Even if we assume cannibalism was truly rare, the naïve calculation of brown trout imposed mortality is

This article is protected by copyright. All rights reserved
premised on some very unlikely assumptions: that every fish consumed by brown trout was similar in size to outmigrants and that every fish consumed by brown trout would have survived their journey out of the 64 km below the dam if it was not consumed. In reality, brown trout can consume juvenile salmonids during their entire rearing period leading up to outmigration, including at sizes much smaller than outmigrants (potential negative bias). Further, not all of the wild fish consumed by brown trout would have otherwise survived (potential positive bias), some level of compensatory mortality is certain (Ward \& Hvidsten, 2011). Finally, any attempt to estimate effects on populations would clearly require estimates of consumption at the species level, not lumped into hatchery and wild categories (unknown bias, possibly different for each prey species).

In addition to predation, brown trout may affect survival and growth of wildspawned salmon and trout in the Trinity River through competition. Our sampling techniques and analysis focused on large brown trout with diets and microhabitat use that are distinet from native juvenile salmon and trout. However, other studies have found that juvenile brown trout can compete for food and territory space with juveniles of all three salmon and trout species native to the Trinity River (Fausch \& White, 1986; Gatz, Sale, \& Loar, 1987; Glova \& Field-D odgson, 1995) . Competition could exacerbate any negative effects of brown trout on populations of native fish in the Trinity River, as has been suggested for non-native brook trout and native Chinook salmon in the Columbia River system (Levin et al., 2002). Evaluating effects of competition between brown trout and native salmon and trout in the Trinity River will require a new sampling effort.

Management options

- Historical records are incomplete, but existing information suggests that brown trout abundance in the Trinity River continues to fluctuate. Creel surveys prior to 1970 refer to catches of less than 10 brown trout per angler per year, with fish ranging from 3050 cm (Moffett and Smith 1950; Rodgers 1973). Catches in recent years are generally 2-5 brown trout per angler per day with lengths reaching or exceeding 70 cm (J. Alvarez, personal observation). Our sampling in 2015 might represent part of a recent peak in brown trout abundance. As sampling continued into 2016 and 2017, the brown trout
population estimates declined and younger year-classes were less common (Alvarez 2017). Despite this potential recent decrease in brown trout abundance, our results suggest that Trinity River brown trout have the capacity to exist at abundance high enough to consume a substantial proportion of native salmonid production.

The consumption estimates that we produced are contingent on the validity of our bioenergetics model. Bioenergetics models provide a framework for accounting for metabolic costs and other energetic losses when inferring food consumption from observations of growth. The models are based on fundamental relationships between body size, temperature, and physiological rates (Hansen et al. 1997). There is a large body of work on the energetics of brown trout growth that describes these relationships (Elliott 1994), providing the basis for the parameters that we used. However, there are many uncertainties in bioenergetics models that can lead to biased estimates, including uncertainty in the parameter estimates, the functional form of the physiological relationships, and how these vary across individuals and populations (Chipps and Wahl 2008). In our model, we used simulations to incorporate the uncertainty in our fieldderived parameter estimates into our estimate of consumption, but there are no estimates of the uncertainty available for most of the basic physiological parameters in the literature. One particular area of concern for our estimate is the highly seasonal pattern of prey availability and consumption, with most of the annual energy intake for large brown trout coming from the consumption of hatchery fish during the spring release. The standard bioenergetics model formulation often underestimate consumption when prey availability is high and overestimate consumption when prey availability is low (Chipps and Wahl 2008). However, we do not know how these biases play out over time when food availability transitions from very high to low, or how this seasonal variation may affect our isotopic determination of diet composition.

If brown trout are suppressing survival of native salmon and trout, then direct control of brown trout abundance by altering sport harvest regulations, euthanizing brown trout captured in the course of other sampling efforts, and targeted removal sampling may aid in the recovery of native populations. However, direct control of invasive trout can be
very expensive and such efforts have a mixed record of success (Meyer, Lamansky, \& Schill, 2006; Syslo et al., 2011). If implemented, any such efforts should include assessment of survival of hatchery-released fish and recruitment success of wild fish in order to determine if brown trout control efforts benefit native salmon and trout.

Efforts to manage the brown trout population to reduce impacts on native salmon and trout in the Trinity River are likely to generate some controversy. The authors of previous studies in other regions often comment on the importance of brown trout to the sport fishing community. For example, Belk et al. (2016) investigated the potential for maintaining the fishery for non-native brown trout in the Provo River in Utah while increasing native fish populations through physical habitat restoration. They found that rare species would persist only with low brown trout abundance; negative effects on native species could be ameliorated but not removed while brown trout persisted. Similarly, Townsend (1996) studied streams across New Zealand and found localized extirpations of galaxiid fishes and large scale changes to entire aquatic communities associated with introduced brown trout. Despite these findings, in his conclusions he questioned the need for and feasibility of any brown trout removal program. A community of recreational anglers is invested in brown trout in the Trinity River system because resident brown trout support a small recreational fishery, especially when native anadromous species are not available.

As an alternative to direct control efforts, it may be possible to reduce predation on hatchery fish by altering release practices at the hatchery. Reducing brown trout predation on hatchery-released fish has two potential benefits: increased survival of hatchery-released fish, supporting conservation efforts and harvest opportunities; and a reduced subsidy to the brown trout population. The latter could have cascading affects, including reducing the abundance of large, piscivorous brown trout that rely on hatcheryreleased fish, and reducing predation on wild fish. This assumes that brown trout will not be able to sustain their high biomass by switching to an alternative prey, but we argue that this is a reasonable assumption given that large brown trout do not currently consume much biomass of other prey during the portion of the year when hatchery salmon are not
available. Approaches that might reduce brown trout predation on hatchery fish include synchronizing the releases of multiple species from the hatchery, so that large numbers of prey swamp the brown trout for a lower overall predation rate (Ward \& Hvidsten, 2010), and minimizing the time that hatchery fish remain in the system by delaying releases until fish are large and set to migrate rapidly to sea.

ACKNOWLEDGEMENTS

Funding for this project came from the Hoopa Valley Tribe Fisheries Department, the NOAA Cooperative Institute for Marine Ecosystems and Climate and the Bureau of Reclamation. Thank you to the many employees, students, and volunteers who assisted with electrofising. Jason Adams of Amnis Opes Inc. provided the electrofishing raft. Thanks to Margaret Wilzbach, Nicholas Som, and two anonymous reviewers for comments on an earlier draft.

This article is protected by copyright. All rights reserved

LITERATURE CITED

Adkins, R. D. 2007. The destruction of the Trinity River, California. University of Oklahoma, Norman, Oklahoma.

Alexiades, A. V., Flecker, A. S., \& Kraft, C. E. 2017. Nonnative fish stocking alters stream ecosystem nutrient dynamics. Ecological Applications, 27: 956-965. Alvarez, J. S. 2017. Abundance, growth, and predation by non-native brown trout in the Trinity River, CA. Masters thesis. Humboldt State University.

Araki, H., Berejikian, B. A., Ford, M. J., \& Blouin, M. S. 2008. Fitness of hatcheryreared salmonids in the wild. Evolutionary Applications, 1: 342-355.

Beechie, T. J., Pess, G. R., Imaki, H., Martin, A., Alvarez, J., \& Goodman, D. H. 2015. Comparison of potential increases in juvenile salmonid rearing habitat capacity among alternative restoration scenarios, Trinity River, California. Restoration Ecology, 23: 75-84.

Belk, M., Billman, E., Ellsworth, C., \& McMillan, B. 2016. Does habitat restoration increase coexistence of native stream fishes with introduced brown trout: A case study on the Middle Provo River, Utah, USA. Water, 8: 121.

Borok, S., Cannata, S., Hileman, J., Hill, A., \& Kier, M. C. 2014a. Trinity River basin salmon and steelhead monitoring project, 2012-2013 season. Northern Region, Redding, CA: California Department of Fish and Wildlife.

Borok, S., Cannata, S., Hill, A., Hileman, J., \& Kier, M. C. 2014b. Trinity River basin salmon and steelhead monitoring project, 2011-2012 season (Annual Report). Northern Region, Redding, CA: California Department of Fish and Wildlife. Burke, B.J. \& Rice, J.A. 2002. A linked foraging and bioenergetics model for southern flounder. Transactions of the American Fisheries Society, 131: 120-131. California Fish and Game Commission. 2007. Notice of proposed changes in regulations. Amend Subsection 7.50(b)(91.1), Title 14, CCR, Klamath River Basin Sport Fishing. State of California.

This article is protected by copyright. All rights reserved

California Hatchery Scientific Review Group. 2012. California hatchery review report.
Prepared for the US Fish and Wildlife Service and Pacific States Marine Fisheries Commission. June 2012. 100 pgs.

Chipps, S.R. \& Wahl, D.H. 2008. Bioenergetics modeling in the $21^{\text {st }}$ century: reviewing new insights and revisiting old constraints. Transactions of the American

- Fisheries Society, 137: 298-313.

Clutter, R. I., \& Whitesel, L. E. 1956. Collection and interpretation of sockeye salmon scales. International Pacific Salmon Fisheries Commission. Bulletin IX. 159 pgs.
Dieterman, D.J., Thorn, W.C., \& Anderson, C.S. 2004. Application of a bioenergetics model for brown trout to evaluate growth in southeast Minnesota streams.

Minnesota Department of Natural Resources Investigational Report, 513: 1-27.
Dill, W. A., \& Cordone, A. J. 1997. History and status of introduced fishes in California, Fish Bulletin 178. California Department of Fish and Game.
Dunn, A., Francis, R. I. C. C., \& Doonan, I. J. 2002. Comparison of the ChapmanRobson and regression estimators of Z from catch-curve data when non-sampling stochastic error is present. Fisheries Research, 59: 149-159.

Elliott, J.M., 1994. Quantitative ecology and the brown trout. Oxford University Press.
Fausch, K. D., \& White, R. J. 1986. Competition among juveniles of coho salmon, brook trout, and brown trout in a laboratory stream, and implications for Great Lakes tributaries. Transactions of the American Fisheries Society, 115: 363-381.
Flinders, J. M. 2012. Stable isotope analysis ($\delta{ }^{15}$ nitrogen and $\delta{ }^{13}$ carbon) and bioenergetic modeling of spatial-temporal foraging patterns and consumption dynamics in brown and rainbow trout populations within catch-and-release areas
of Arkansas tailwaters. PhD thesis. University of Arkansas.
Gatz, A. J., Sale, M. J., \& Loar, J. M. 1987. Habitat shifts in rainbow trout: competitive influences of brown trout. Oecologia, 74: 7-19.

Glova, G. J., \& Field-Dodgson, M. S. 1995. Behavioral interaction between Chinook salmon and brown trout juveniles in a simulated stream. Transactions of the American Fisheries Society, 124: 194-206.

This article is protected by copyright. All rights reserved

Goodman, D. H., Som, N. A., Alvarez, J., \& Martin, A. 2015. A mapping technique to evaluate age-0 salmon habitat response from restoration. Restoration ecology, 23: 179-185.

Groot, C., Margolis, L., \& Clarke, W. C. 1995. Physiological ecology of Pacific salmon. Vancouver Canada: UBC Press.

Hansen, P., Johnson, T., Kitchell, J., \& Schindler, D. E. 1997. Fish bioenergetics 3.0 (No. WISCU-T-97-001). Madison: University of Wisconsin Sea Grant Institute.

Harris, Nathan J., Petros, P., \& Pinnix, W. D. 2016. Juvenile salmonid monitoring on the (mainstem Trinity River, California, 2015. Yurok Tribal Fisheries Program, Hoopa Valley Tribal Fisheries Department, and U. S. Fish and Wildlife Service, Arcata Fish and Wildlife Office. Arcata Fisheries Data Series Report Number DS 201646, Arcata, California.

Hoxmeier, R. J. H., \& Dieterman, D. J. 2016. Long-term population demographics of native brook trout following manipulative reduction of an invader. Biological Invasions, 18: 2911-2922.
Jensen, H., Kiljunen, M., \& Amundsen, P.A. 2012. Dietary ontogeny and niche shift to piscivory in lacustrine brown trout Salmo trutta revealed by stomach content and stable isotope analyses. Journal of Fish Biology, 80: 2448-2462.

Jonsson, N., Næsje, T. F., Jonsson, B., Saksgård, R., \& Sandlund, O. T. 1999. The influence of piscivory on life history traits of brown trout. Journal of Fish Biology, 55: 1129-1141.
L'Abée-Lund, J. H., Langeland, A., \& Sægrov, H. 1992. Piscivory by brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus L. in Norwegian lakes. Journal of - Fish Biology, 41: 91-101.

Levin, P. S., Achord, S., Feist, B. E., \& Zabel, R. W. 2002. Non-indigenous brook trout and the demise of Pacific salmon: a forgotten threat? Proceedings of the Royal Society of London B: Biological Sciences, 269: 1663-1670.

MacCrimmon, H. R., \& Marshall, T. L. 1968. World distribution of brown trout, Salmo trutta. Journal of the Fisheries Research Board of Canada, 25: 2527-2549.

This article is protected by copyright. All rights reserved

McCutchan, J. H., Lewis, W. M., Kendall, C., \& McGrath, C. C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102: 378-390.

McHugh, P., \& Budy, P. 2006. Experimental effects of nonnative brown trout on the individual- and population-level performance of native Bonneville cutthroat trout.

- Transactions of the American Fisheries Society, 135: 1441-1455.

Meyer, K. A., Lamansky, J. A., \& Schill, D. J. 2006. Evaluation of an unsuccessful brook trout electrofishing removal project in a small Rocky Mountain stream. North American Journal of Fisheries Management, 26: 849-860.

Minagawa, M., \& Wada, E. 1984. Stepwise enrichment of 15 N along food chains: further evidence and the relation between $\delta 15 \mathrm{~N}$ and animal age. Geochimica et cosmochimica acta, 48: 1135-1140.

Moffett, J. W., and S. E. Smith. 1950. Biological investigations of the fishery resource of Trinity River, Calif. U.S. Fish and Wildlife Service, Special Scientific Report Fisheries No. 12.

Myrvold, K. M., \& Kennedy, B. P. 2015. Interactions between body mass and water temperature cause energetic bottlenecks in juvenile steelhead. Ecology of Freshwater Fish, 24: 373-383.

National Marine Fisheries Service. 2014. Final recovery plan for the Southern Oregon/Northern California coast evolutionarily significant unit of coho salmon (Oncorhynchus kisutch). National Marine Fisheries Service. Arcata, CA.

Peterson, B. J., \& Howarth, R. W. 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia.

- Limnology and oceanography, 32: 1195-1213.

Phillips, D. L., \& Gregg, J. W. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136: 261-269.

Pickering, A. D., Pottinger, T. G., \& Christie, P. 1982. Recovery of the brown trout, Salmo trutta L., from acute handling stress: a time-course study. Journal of Fish Biology, 20: 229-244.

This article is protected by copyright. All rights reserved

R Development Core Team. 2009. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Rodgers, D. W. 1973. The sport fishery on the Trinity River below Lewiston Dam from March 1, 1968 to July 31, 1969. California Department of Fish and Game, Administrative Report 73-9.

Sánchez-Hernández, J., Eloranta, A. P., Finstad, A. G., \& Amundsen, P.A. 2017. Community structure affects trophic ontogeny in a predatory fish. Ecology and Evolution, 7: 358-367.

Seber, G. A. F. 1982. The estimation of animal abundance and related parameters (2nd ed.). London, UK: Griffin.

Sinnen, W., Currier, M., Knechtle, M., \& Borok, S. 2005. Trinity River basin salmon and steelhead monitoring project 2005-2006 season (Annual Report No. 90830). North Coast Region: California Department of Fish and Game.

Stock, B. C., \& Semmens, B. X. 2013. Package 'MixSIAR' (R package).
Syslo, J. M., Guy, C. S., Bigelow, P. E., Doepke, P. D., Ertel, B. D., \& Koel, T. M. 2011. Response of non-native lake trout (Salvelinus namaycush) to 15 years of harvest in Yellowstone Lake, Yellowstone National Park. Canadian Journal of Fisheries and Aquatic Sciences, 68: 2132-2145.

Thomas, J. L. 1981. Historical notes on the brown trout in Trinity County, California. California Department of Fish and Game.
Townsend, C. R. 1996. Invasion biology and ecological impacts of brown trout Salmo trutta in New Zealand. Invasion Biology, 78: 13-22.

Unknown. 1911, July 29. New trout sent to Trinity County; Scottish variety to supplant the famous rainbow species. Trinity Journal. Redding, California.

Van Alen, B. W. 1982. Use of scale patterns to identify the origins of Sockeye Salmon (Oncorhynchus nerka) in the fishery of Nushagak Bay, Alaska. Informational Leaflet No. 202. Alaska Department of Fish and Game.

Vander Zanden, M. J., Cabana, G., \& Rasmussen, J. B. 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios $(\delta 15 \mathrm{~N})$ and

This article is protected by copyright. All rights reserved
literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences, 54: 1142-1158.

Vander Zanden, M., \& Rasmussen, J. B. 2001. Variation in $\delta 15 \mathrm{~N}$ and $\delta 13 \mathrm{C}$ trophic
fractionation: implications for aquatic food web studies. Limnology and oceanography, 46: 2061-2066.

Ward, D. M., \& Hvidsten, N. A. 2010. Predation: compensation and context dependence.
In: Atlantic salmon ecology. Edited by Ø. Aas, A. Klemetsen, S. Einum, and J. Skurdal. Wiley-Blackwell, Oxford, UK, 199-220.

Warren, D. R., \& McClure, M. M. 2012. Quantifying salmon-derived nutrient loads from the mortality of hatchery-origin juvenile Chinook salmon in the Snake River basin. Transactions of the American Fisheries Society, 141: 1287-1294. Wilson, S. 1879. Salmon at the Antipodes: Being an account of the successful introduction of salmon and trout into Australian waters. Edward Stanford, London.

Figure legends

Figure 1. Map of the study area with an inset regional map of California. The Trinity River flows from right to left. The study area begins at Lewiston Dam and ends at the confluence of the main stem with the North Fork of the Trinity River. Within the study area, each reach is highlighted with the color of the Floy T-bar tag that was used to mark fish, matching the temperature profile lines in Figure 2.

Figure 2. Temperature profiles of each reach where Reach 1 is the furthest upstream and Reach 6 is the furthest downstream. The color of the line matches the color of the reach in Figure 1.

Figure 3. Age and size for all individual brown trout and the fitted Von Bertalanffy growth curve. Von Bertalanffy parameter estimates and standard errors are in Table 3.

This article is protected by copyright. All rights reserved

Figure 4. Isoplot of brown trout and prey items. Blue x's represent individual Brown Trout isotope ratios. Prey items are labeled and the location is the mean value for that prey category. The error bars are a single standard deviation.

Figure 5. Diet proportions of Brown Trout grouped by fork length. Sample sizes for each size bin were $\mathrm{n}=19$ for 20 to $30 \mathrm{~cm}, \mathrm{n}=60$ for $30-40 \mathrm{~cm}, \mathrm{n}=83$ for $40-50 \mathrm{~cm}, \mathrm{n}=61$ for $50-$ 60 cm , and $\mathrm{n}=30$ for $>60 \mathrm{~cm}$.

Figure 6. Estimated biomass of prey consumed by all brown trout $>20 \mathrm{~cm}$ long in population the Trinity River over the course of a year. Median estimate consumption estimates were $5,930 \mathrm{~kg}$ of hatchery fish $(95 \%$ CI 3,800 to $8,805 \mathrm{~kg}) 3,566 \mathrm{~kg}$ of invertebrates (95% CI 1,279 to $5,524 \mathrm{~kg}$), $924 \mathrm{~kg}(95 \%$ CI 60 to $3,526 \mathrm{~kg}$) of wild fish, and 598 kg of lamprey ammocoetes (95% CI 18 to $2,058 \mathrm{~kg}$).

This article is protected by copyright. All rights reserved

Table 1. Parameters of the Wisconsin bioenergetics model and the values used to implement it. The model equations and parameter meanings are described in Hansen et al. 2007. All parameter values are from Dieterman et al. (2004) except LOSS, which is from Burke and Rice (2002).

Parameter Value	Parameter definition
CTO 17.5	Water temp corresponding to 0.98 of the maximum consumption rate
$\mathrm{CTM}_{\square} 17.5$	The upper end of the temperature where still at 0.98 of the maximum consumption rate
$\mathrm{CQ} \quad 3.8$	Water temperature at which temperature dependence is a fraction (CK1) of the maximum rate
$\mathrm{CA} 0.2161$	Intercept of mass dependence function for a 1 g fish at optimum water temperature
CB -0.233	Coefficient of mass dependence for increasing portion of curve
CTL 20.8	Temperature at which consumption is reduced some fraction (CK4) of the maximum rate
CK1 0.23	Specific rate of respiration ($\mathrm{g} / \mathrm{g} / \mathrm{d}$)
CK4 0.1	See CTL
RA $\quad 0.0113$	Intercept for the allometric mass function for respiration
$\begin{array}{ll}\mathrm{RB} & -0.269\end{array}$	Slope of allometric mass function for respiration
RQ 0.0938	Approximates the rate at which the function increases over relatively
	low water temperature
$\text { RK1 } \quad 1$	Intercept for swimming speed above the cutoff temperature
$\text { RK4 } 0.13$	Mass dependent coefficient for swimming speed at all water temperatures
$\text { BACT } 0.0405$	Water temperature dependent coefficient of swimming speed at water temp below RTL
RTO 0.0234	Coefficient for swimming speed dependence on metabolism (s/cm)
RTL 25	Cutoff temperature at which activity relationship changes
ACT 9.7	Intercept of the relationship between swimming speed and mass at a given temperature
LOSS 0.35	Energy lost to feces and specific dynamic action
EDA 6582	Intercept for energy density-weight function
EDB 1.1246	Slope of the energy density-weight function

Table 2. Brown trout population parameters for the bioenergetics simulation. The estimates and variance are derived from field data collected during this study.

Table 3. Comparison of diet composition results based on lavage and isotope analysis. The lavage was calculated as the summed mass of content within a category divided by the total mass of stomach
contents. All masses are wet masses and do not account for digestive state. Brown Trout are grouped by fork length.

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

[^0]: Brown trout (Salmo trutta) have undergone massive range expansion from their native waters in Europe and North Africa to the waters of every continent except Antarctica (MacCrimmon \& Marshall, 1968; Dill \& Cordone, 1997). This expansion was intentional. European colonists transported and introduced brown trout around the world because they considered them desirable for sport fishing and food (Wilson, 1879). However, introduced brown trout may negatively affect populations of native fishes in areas where they have been introduced (Townsend, 1996; McHugh \& Budy, 2006; Belk et al., 2016; Hoxmeier \& Dieterman, 2016). In this study, we evaluated predation by introduced brown trout on native salmon and trout species that are the focus of a largescale, intensive conservation and habitat restoration effort in the Trinity River, a large tributary of the Klamath River in Northern California.

 In Northern California, Scottish, German, and hybrid brown trout eggs were brought to Fort Gaston (Hoopa, CA) and Sisson hatcheries near Mt. Shasta by train in the 1890's (Thomas, 1981; Adkins, 2007). There were two introductions from those

